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A Hybrid Kinetic-Quantum Model for
Stationary Electron Transport
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Interface conditions between a classical transport model described by the
Boltzmann equation and a quantum model described by a set of Schrodinger
equations are presented in the one-dimensional stationary setting. These inter-
face conditions, derived thanks to an asymptotic analysis of the Wigner trans-
form, are shown to be flux-preserving and are used to build a hybrid model
consisting of a quantum zone surrounded by two classical ones. The hybrid
model is shown to be well posed when the potential is either prescribed or com-
puted self-consistently, and the semiclassical limit of the problem is shown to
give the right interface conditions between two kinetic regions (the electrostatic
potential being fixed). This model can be used to describe far-from-equilibrium
electron transport in a resonant tunneling diode.

1. INTRODUCTION

Due to the ongoing miniaturization in semiconductor technology, the very
widely used Drift-Diffusion (DD) model ceases to correctly account for the
more and more elaborate physical phenomena involved in many of
nowadays devices.

To account for out of equilibrium phenomena in classical transport
(ballistic electrons, energetic tails...), the Boltzmann equation (BE)
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represents the more precise model. However, its numerical cost is often
prohibitive. The need of a coarser model, which is nevertheless more
precise than the DD equation, has led to the introduction of the energy
transport (ET), the spherical harmonic expansion (SHE) models/40'41* the
extended hydrodynamic model.(2) The rigorous derivation of these models
from the BE is investigated in refs. 5, 6, 36, and 39.

To model the quantum phenomena (the tunneling effect, etc) involved
in devices such as the resonant tunneling diode (RTD) or superlattices and
many others, the BE is of no use. A finer level of modeling is achieved via
the Schrodinger or (equivalently the Wigner and the Von Neumann) equa-
tion. The collision processes (for example with phonons) can be modeled
in this framework thanks to the quantum field theory"'10> or by deriving
phenomenological "master equations" to compute the reflection-transmis-
sion coefficients (the interested reader can find in ref. 12 a detailed discus-
sion and an extended bibliography on scattering assisted tunneling).

Hence, the designer is provided with a whole hierarchy of models
among which he can chose the appropriate one, depending on the physical
phenomena involved in the device operation. This situation is however not
completely satisfactory, since the far from equilibrium phenomena, whose
description needs an expensive model, often take place in localized regions
of the device, while the remaining regions can be sufficiently well described
by a coarser model. It is then necessary to develop a hybrid strategy:
precise models used in out of equilibrium regions and coupled to coarser
ones in the rest of the device. To achieve this goal, two mathematical issues
have to be investigated. The first issue is the mathematical derivation of coarse
models from finer ones, and the second one, which is not independent of the
first, concerns the introduction of appropriate interface conditions for the
coupling of the two models.

This program has been achieved for gas dynamics (reentry of the space
shuttle in the atmosphere) by coupling the Boltzmann equation to the
Euler or Navier Stokes equations and has been recently extended to the
classical transport semiconductors by coupling the BE to the DD, the SHE
and the ET models.2 (14' 15'23) Our purpose in this paper, is to propose and
analyze a hybrid model which couples a quantum (Q) description to a
classical one (C).

The Schrodinger equation applied to semiconductor modeling has
been extensively analyzed in different contexts and settings (see for example
refs. 9, 13, 31, and 32...). It has also been shown that its semiclassical limit
leads to the Vlasov equation.'19'26-27'37' The main tool to pass from the

2 These references contain an extended bibliography on the Boltzmann-Euler (or Navier
Stokes) coupling.
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Schrodinger picture to the kinetic one is the Wigner transform introduced
in ref, 42 and analyzed in refs. 19 and 26 and the Wigner series.'281 Hence,
the first question, concerning the mathematical derivation of kinetic equa-
tions from the Schrodinger equation has been addressed in the literature
and clear answers are available at least in the collisionless case (Vlasov).
Let us note that all the mentioned semiclassical results concern whole space
problems and are reviewed in ref. 20.

Interface conditions. When dealing with hybrid models, one has to
consider boundaries, but a few results on the semiclassical limit in bound-
ary value problems are available. However, in the very simple stationary
one dimensional picture transparent boundary conditions have been intro-
duced and analyzed in refs. 7 and 8. These boundary conditions have been
shown to give rise in the semiclassical limit to the standard inflow bound-
ary conditions for the Vlasov equation. Let us also note that a multidimen-
sional version of these boundary conditions is introduced in ref. 25 (see
also ref. 34 and analyzed in ref. 4). We shall take advantage of the analogy
between quantum and classical inflow boundary conditions to introduce
the appropriate Q-C interface conditions. Since the semiclassical limit of
the Schrodinger picture to the kinetic one can be done uniquely, to our
knowledge, in the collisionless case, we shall assume that the Q zone is
purely ballistic, whereas collisions can take place in the C zone.

The outline of the paper is as follows. In the next section, we derive
artificial boundary conditions for the Vlasov equation. Taking advantage
of an analogous boundary condition in the Schrodinger picture, we write
an appropriate Q-C interface condition and show that it is flux preserving.
In Section 3, we write the hybrid C-Q-C model and show the existence of
a self-consistent solution. In Section 4, we prove that the semiclassical limit
of the hybrid model (with a prescribed electrostatic potential and a positive
absorption term) gives the "good" artificial conditions for the Vlasov equa-
tion already derived in Section 2. We finally discuss in Section 5 the
validity of the model and its application to the resonant tunneling diode.

2. THE APPROACH

2.1. Transparent Boundary Conditions for a Kinetic Equation

Let a beam of electrons be submitted to an electrostatic potential V in
a region [0, L] of the one dimensional space. In the stationary ballistic
regime, the electron distribution function / satisfies the Vlasov equation

822/90/3-4-8
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Note that the total energy E(p, x) := (p2/2m) — eV(x) is conserved along
the above curves.

Since/is constant along the characteristics (that we plotted in Fig. 1),
the knowledge of its value at incoming velocities (x = 0 and p > 0 or x = L
and p < 0) determines the value of/at those points of phase space belong-
ing to open trajectories. On closed trajectories (trapped particles),/can be
an arbitrary constant (see refs. 21 and 35).

Remark 2.1. To overcome the nonuniqueness problem, a minimal
solution can be constructed by setting / = 0 on such closed trajectories.
Mathematically speaking, this is done by adding an absorption term of the
form vf in the left hand side of (2.1) (with v>0) , solving the modified
Vlasov equation, and then letting v tend to zero (see ref. 35).

Fig. 1. Resolution by means of phase portrait.
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where e is the elementary charge, m is the effective electron mass and (,v, p)
are the position-momentum variables. The solution of (2.1) is constant
along the characteristics defined by

Let us now artificially split the interval [0, L] into [0, .YI] and
[x,, L] as shown in Fig. 1, and solve the kinetic equation only on [0, A* , ] .
What are the boundary conditions to be prescribed at x = xt in order to
the computed solution be the restriction on [ 0, x, ] of the original
problem's solution?



In the one dimensional stationary case, a careful inspection of the
phase portrait answers this question. Indeed, let p> 0 be the momentum at
x = x{ of a particle going from [0, .xj to [x,, L]. Two cases are possible

« Total reflection. Kp2/2m -eV(xl) <max;ce[>i A]{ — eV(x)}, the par-
ticle is reflected by a potential barrier located in [x t , L]. Consequently, it
reenters the interval [0, .x,] with a momentum —p. For such /?'s, we have

f ( x i , -p)=f(xl,p).

• Total transmission. I fp 2 /2m — eV(xi)>maxxe^x £-,{ — eV(x)}, the
particle has enough energy to reach x = L. By symmetry, a particle entering
the interval [0, x,] with a momentum —p has been previously injected at
x = L with the momentum —p2= —^/p2— 2emV(xl) + 2emV(xL). This
leads to/(.XT,, -p) = f(L, -p2).

Both cases can be rewritten in a unique way

2.2. Scattering States and "Quantum Trajectories"

Let us consider an interval [ -Xi ,x 2 ] which we call the (quantum)
device region (xl<x2) in which an electrostatic potential V(x) is built.
We assume that the electrostatic potential outside the device is constant
(metallic contacts) and consider electrons injected into the device with a
kinetic energy p2/2m either at x, or x2.

Notation. All along this paper we shall denote Vl=V(xl) and
V2=V(x2).
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where we have introduced the reflection and transmission coefficients
Rp = 1 and Tp = 0 in the case of total reflection and conversely in the total
transmission case. Let us also note that in the derivation of (2.2), the trans-
port is assumed to be ballistic in [ x { , L] only.

If the particles are in a quantum regime in [x]; L], it is sufficient to
use (2.2) where Rp and Tp are computed from an appropriate quantum
model. In ref. 7, a quantum model leading to (2.2) in the semiclassical limit
is introduced and analyzed. It is based on the computation on a bounded
domain of the scattering states of the Schrodinger operator. These scattering
states play the role of the Vlasov equation's characteristics and allow the
computation of the reflection-transmission coefficients needed to develop the
Q-C coupling method. We shall recall in the following subsection the basic
properties of these scattering states.



• Electrons injected at x = xl

An electron arrives at x = xl with a kinetic energy p2/2m. The total
energy at x = x{ is equal to E = p2/2m — eVl. In a quantum framework, it
can be described by a left scattering state of the Schrodinger with the
energy E

The existence and uniqueness of solutions, is deduced from the Fredholm
alternative:(4>7) multiplying the Schrodinger equation by tj/p, integrating
over [*!, x2] and taking the imaginary part leads to

The right hand side, being equal to zero if the boundary conditions of (2.6)
are homogeneous, it is then clear that if » ̂  0, the solution is unique.

satisfy the identity
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The potential being constant outside the device, the wave function denoted
by reads \ji.(x) = e

ip<-x-x^+ rpe-'p(x-x^ for x<xl and iK(jc) =
for (see ref. 7). Let us note that the

potential V2 is assumed to be larger than V^ in ref. 7 which yields that
is real. Here we shall consider cases where this

square root can be imaginary. We denote
square root with nonnegative imaginary part and obtain i// (x) =

for Hence \j/p solves

Moreover since, for a real number a, the relation holds
with (a)+ =max(a, 0), then the reflection and transmission coefficients
defined by



• Electrons injected at x = x2

In this case the electron arrives at x = x2 with a negative momentum
— p. Its energy is then equal to E = p2/2m -eV2. Hence the wave function <pp

is a right scattering state with energy E. The expressions q>p(x} =
e-t**-*jlh + ^eip(x-X2)/f, for x>^ and ^(x) = t^-, y,l - 2«n< ^-K.X*-*,)/»

for x<Xi, lead to
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Analogously to the first case, we have

Remark 2.2. Note that with our choice of the index p, \lip and cpp

do not correspond in general to the same total energy for the Schrodinger
operator (unless F, = K2).

2.3. Adding an Absorption Term

In ref. 4, it has been noticed that the nonuniqueness of solutions near
bound state energies leads in the multidimensional case to a difficulty in
defining electron density because of a lack of integrability. This problem is
solved by adding an absorption term to the Schrodinger equation.
Although this problem does not occur in the one dimensional case, the
introduction of an absorption term will help us in the study of the hybrid
model and its semiclassical limit. Equations (2.6) and (2.3) are then
replaced by



To study the semiclassical limit of this system, we introduce the Wigner
transform (see ref. 7)
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where v is a positive constant. The reflection transmission coefficients Rvp l,

T P , I >  R p , 2  a n d  T p , 2  s t i 1 1  S i v e n  b y  < 2 - 4 )  a n d  < 2 ' 8 )  s a t i s f V

2.4. Quantum Inflow Boundary Conditions

In ref. 7, the quantum analogue of a one sided injection in a Vlasov
boundary value problem was derived and studied. Let us write it in the
case of an injection at both sides. Let G^p) be the statistics of injected
particles at x = xl and G2(p) that of particles injected at x = x2 with a
momentum — p ( />>0). The charge density and the current density are
computed by the following formula



A rigorous proof in the case G2 = 0 and G, small can be found in ref. 7. Let
us recall how boundary conditions are recovered. For the sake of simplicity
we first assume that G2 = 0. To compute /"(.V,, p), we need to know
ijjq(xl +h(r;/2)). But it is readily seen by rescaling the Schrodinger equation
that the formula ^q(xl + hy) = e'qn + rqe~iqr> which is rigorously satisfied for
r\ < 0 is a good approximation for r\ > 0 lying in a bounded interval and h
small enough. Using this asymptotic expression to compute f h ( x { , p) we
find after some straightforward computations that
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and where £' is a localizing function

with the notation

For some positive a. The macroscopic densities n, j can be shown to be the
zero-th and the first moments of/*

The role of the localizing function (9 is to provide a regular Wigner func-
tion for our problem. Let us note that the macroscopic quantities n(x) and

j ( x ) do not depend on 6 for xe[xl,x2] and that the restriction to
[xi, x2] of the limit as h tends to zero of /* does not depend on & (see
ref. 20).

By the method used in ref. 7, it can be proven that as h tends to zero,
/* converges formally to the solution / of the Vlasov equation (2.1) with
the boundary condition

where Rp<l is given by (2.4). Taking into account the fact that G2 is not
equal to zero, and by using the asymptotic expression (pp(xl+hr/) =
[t>e-iVp1-2emi.y2-yl)^ we fmd after some computations /*(.v,,-p)~
R p , l G } ( p ) + TJ>2,2G2(p2) where



3. A HYBRID MODEL FOR A 2-ZONE DEVICE

In this section we consider a device extending on an interval [0, L]
such that [0, x^ is a C zone and [xl, L] is a Q zone. We shall set x2 = L
in all this section. In the Q zone, the description will rely on the wave func-
tions \j/p and cpp defined by (2.9)-(2.10). Notice that the fundamental
hypothesis to derive the boundary conditions involved in (2.9)-(2.10) is
that the electrostatic potential V is constant outside the interval [x,, x2~\.
This hypothesis is fulfilled at x = x2 if we consider that the medium x> x2

has a very large conductivity (metal or highly doped region). At x = xl,
this argument does not hold since xt is an artificial boundary. However, x,
is chosen to be a transition point between a classical description and a
quantum one. Therefore, a WKB approximation should be appropriate
near xl which implies that the potential variation is small. This gives an
indication that the boundary conditions involved in (2.9)-(2.10) are
reasonable. Of course, this assertion needs to be made more precise by
looking at orders of magnitude in order to get a quantitative criterion for
the location of the Q-C interface.

636 Ben Abdallah

and with the convention G2(p2) = 0 when p2 is imaginary. Consequently,
we have the following asymptotic formula

To obtain a complete analogy with formula (2.2) we shall use the
reciprocity of the transmission coefficients (see ref. 29).

Lemma 2.3. Let p2(p, V) be defined by (2.17). Assume that p2 is
real. Let \jjp and (/>P2 be the unique solutions of the absorption Schrodinger
equations (2.9) and (2.10). (p has to be replaced by p2 in (2.10)). Then
T-iy ij-iv
1 p, l-%2 ,2 '

Proof. First, we notice that in view of (2.17), \l/p and (pp2 solve the same
Schrodinger equation. Hence their Wronskian is constant. Comparing its
values at x = Xi and x = x2 leads to p2ijjp(x2) = —p(pPl(p, v)(x\} which yields
the desired identity.

which is in complete analogy with (2.2).

In view of Lemma 2.3 we have the asymptotic formula



Let/c be the distribution function in the C zone [0, xj and/e be the
Wigner function in the Q zone. According to the results of ref. 7 recalled
in the previous section, fQ is defined by

In order that the interface condition above to be physically admissible,
the first thing that has to be checked is the current conservation at the
interface x = xl. This is done in the following Lemma

Lemma 3.1. The currents Jc(x) and JQ(x) computed respectively
in the C and the Q zone coincide at the Q-C interface Jc(*\) ~JQ(X\)-

Proof. We recall that

Using the boundary conditions of (2.9) and (2.10), we find
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This yields

and

where G2(p) is the statistics of particles emitted at x-x2 = L. Inspired by
the analogy between (2.2) and (2.18), we impose the following boundary
condition on/c at x — xl



In view of the interface conditions defined above, the hybrid model for
a two zone device consists in solving for fc and fQ the following system
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In the last integral, we make the change of variable p = p2(p', V). Recalling
that p dp = p' dp' we claim that, dropping the primes, we have

Indeed, the above formula is obvious except for the lower bound of the last
integral. To prove that it is equal to zero, we distinguish two cases.

• If F, < F2, thenp 2 (0 , K ) e R + and consequently Tp,2 given by (2.10)
is equal to zero i f p < p 2 ( 0 , V}. Therefore

The change of variable/) = p2(p', V] gives the desired lower bound (that is
zero).

• If F2< Vi then p2(0, V) is imaginary. We then have

and since p2 is imaginary for 0<p< ̂ /2em( Vl — V2), we have

Now it is readily seen from (3.1), that

for x e [0, xj and p e R with the boundary conditions



where Rp { and Tp<l are given by (2.8) and p2(p, V) is defined by (2.17).
In the Q region, the electrons are described by the Wigner function

Finally I/JP and <pp are given by (2.3) and (2.6). The collision operator J is
taken under the form
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where M T ( p ) = Cexp( —p2/2mkBT) is the Maxwellian with the lattice tem-
perature. The Pauli exclusion principle can be taken or not into account
(e^O). We assume (see ref. 33)

When s > 0 everywhere, the kernel of Q is equal to the set of Fermi-Dirac
functions with the lattice temperature

In general, the problem (3.2)-(3.3) does not have a unique solution. By
adding an absorption in the spirit of refs. 33 and 35 we obtain the following
result.

Theorem 3.2. Let V be a given potential in C2([0, jc,]) and con-
tinuous in the vicinity of x2 and let Rp ^ and Tp : be nonnegative real func-
tions of p such that Rp { + Tp^^l. Assume there exists /u e R such that
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Then, for every positive v the modified equation

on [0, Xi~\ with the boundary conditions (3.3) admits a unique solution fc

satisfying

Proof. We first deduce from (2.17) that G2(p2(p, ^(K-^ + ̂ lp)- Let
us now define

Starting from geL°°(U + ) (a guess for f c ( x l , p ) ) such that g ( p ) ^
^t+y(p), we look for a solution solution/in A'of

with the boundary conditions

The relation Rpil + Tp>1^l implies that/(x l 5 -p^^+y^p). We then
apply Theorem 2.1 of ref. 33 and get a unique solution / in X. Let now
g*(p) = f ( x i , p). Then/is a solution of the Boltzmann equation subject to
the boundary conditions of Theorem 3.2 if and only if g* = g. To prove the
existence of such a g, we adopt a fixed point procedure. However, this can-
not be done immediately because of the lack of compactness (with respect
to p). To overcome this difficulty, we regularize g* by a convolution proce-
dure g * = pa * g* where pa is a nonnegative C°° approximation of the
Dirac measure. The kernel pe has to be chosen carefully in order to
preserve the supersolution estimate

Using the decay on R+ of the Fermi-Dirac distribution J^, it is readily
seen that if supp px c R_ then [pe * J^](/>) < ^(p) for p ^ 0. This gives
compactness an allow to construct an approximate solution of the problem.
Afterwards, we pass to the limit s -»0.



4. A HYBRID MODEL FOR A 3-ZONE DEVICE

We consider now a device extending on the interval [0, L] and let
0 < X j <x2^L such that [0, Xi] and [x2, L] are the C zones and [xt, x2]
is the Q zone. We assume that the potential V is given, is regular in the C
zones and satisfies F(0) = 0 and F(L)= VL^Q. Before going on, we intro-
duce a new notation

It is readily seen that — pl is the momentum at jc = jt, of an electron injec-
ted at x2 with a momentum —p and which is submitted to the potential
V. Analogously, the momentum p2(p, V) defined in (2.17) is that at x2 of
a particle having the momentum/) at *,. A direct application of Lemma 2.3
and the relation pl(p2(p, V), V) = p2(pl(p, V), V)=p, gives

Lemma 4.1. Let p i ( p , V) be defined by (4.1) and assume it is
real. Let (pp and \j/p be the unique solutions of the absorption Schrodinger
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To prove uniqueness of solutions in X, we proceed like in ref. 33. We
assume that / and g are two solutions, we write the difference between the
two Boltzmann equations, multiply it by sgn(f-g) and integrate over x
and p. Taking advantage of the inequality

proven in ref. 33, we find

Using the boundary conditions (3.1), we end with the following estimate

which implies that f = g since Rp l < 1.
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equations (2.10) and (2.9). (p has to be replaced by pl in (2.9)). Then
rr'V 'T'V
1 p\.\-* P. 2'

Writing the interface conditions of the previous section at x = xl and
their analogue at x = x2, we obtain the following hybrid model

where v 5= 0 and the reflection transmission coefficients Rp , and Tp ,
(/ = 1, 2) are given by (2.4)-(2.8). Moreover the Wigner function in the Q
zones is equal to

Here again, we can show that the currents computed in the quantum
regions and classical regions have the same value at the interface. Also,
thanks to the inequality Rpt, + Tpt, < 1, we can prove, in the same spirit as
that of Theorem 3.2, existence and uniqueness of solutions of (4.2). More
precisely,

Theorem 4.2. Let F be a given potential in C2([0, xj u \_x2, L])
and let R"p l, 7^ (, Rv

p 2 and Tv
 2 be nonnegative real functions of p such

that Rp ,. + Tv
p_ (.< 1. Assume there exists /u e R such that

Proof. The proof of uniqueness follows in analogy with that of
Theorem 2.17. For existence, we shall only give the iteration procedure.
Starting from an initial guess g(p) for fc(x2, —p) with p>Q satisfying

Then, for every positive v the system (4.2) admits a unique solution fc

satisfying
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S(p)^^tt+yi we aPply Theorem 3.2 and find a unique solution/, of the
Boltzmann equation on [0, x{~] with G, as inflow boundary condition at
,Y = 0 and with the boundary condition at x{

Afterwards, we construct the unique solution /2 of the Boltzmann equation
on [x2, L] with the boundary condition

Then, we set g*(p) =/2(-*2> ~P)- The functions /,, /2 are the solution of
(4.2) if and only if g* = g. To prove the existence of a solution, we
regularize g* like in the proof of Theorem 3.2 apply the Schauder fixed
point theorem and then pass to the limit in the regularization.

4.1. Existence Result for a Self-Consistent Potential

We consider the system (4.2)-(4.3) where the potential V is computed
self consistently. Namely, we set V= Ve + Vs where Ve is a given exterior
potential, which includes the double barrier (if any), the doping effects and
the applied voltage. The discontinuities of Vf (for instance due to a double
barrier) are assumed to be strictly included in [,V[, .Y2] so that Ve is regular
on the C zones. The self consistent potential Vs is the solution of the
Poisson equation

with the homogeneous boundary conditions

In the above equation, e is the permittivity of the material and is a function
of* which may be discontinuous. We shall however assume that it is C1

in the C zones. More precisely, we make the following hypotheses

(i) F .eL^ff .O, L])n W2-°°([0, x , ]u[ .Y2 , L]) Ve is continuous at
x,,.x2and Fe(0) = 0, Ve(L}=VL

( i i ) e is in Z.°°([0, L] n Cl( [0, .v,] u [.v2, L]) and e(x) ^ c on [0, L]
for some c>0.



Proof. We shall only give the a priori estimates allowing to construct
a fixed point mapping needed two prove existence of solutions.

• Case o/ v > 0. We shall prove that the potential V, lies in a bounded
set. First, we notice that Vs is nonpositive because the electron density n is
nonnegative. This implies, in view of the supersolution estimate, that the
electron density is in a bounded set of L°°([0, x^ u [x2, L ] ) . Moreover,
since n is given in the Q zone by

we deduce from the bound of Theorem 4.2 on / that « is in a bounded set
of L1((xl, x 2 ) ) (depending on v). As a conclusion, we have
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and since by (2.11), (2.12) we have

where C is a constant independent of v. Consequently, V, is bounded in
W2' J(0, L). This estimate allows to construct a fixed point mapping and
gives by the Schauder fixed point theorem a solution of the hybrid model
with v > 0.

• Case o/ v = 0. When v -» 0, the a priori estimate on Vs blows up. To
obtain a better one, we begin by enumerating some simple facts that can
be checked easily by noticing that eV's(x) is increasing on [0, Z,], that « is
bounded in Lm in the C zones and that in the C zone, n(x) -> 0 if
KXx )-»-«>.

Theorem 4.3. Under the hypotheses (i) (ii) and the hypothesis

the problem (4.1)-(4.5), (2.9), (2.10), (2.8), (2.4) admits a solution for each
v^O, which satisfies
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• Fact 1. Vs is bounded in L°° if and only if Ks(x,) is bounded
• Fact 2. Vs(xi) is bounded if and only if Vs(x2) is bounded.

• Fact 3. if Vs is not bounded in L°° then, min Vs ~ ^(.v,) ~ Vs(x2) ~
y's(xi) V's(x2). By the notation A~B, we mean that c^A/B^C for
some positive constants c and C.

Lemma 4.4. Let 6 be a function satisfying \0"\^M2\0\ on the
interval [0, A], Then 6 satisfies the following bound

Let us use the above lemma to give some bounds on \l/p and q>p. For
this aim, we first remark that (2.11 )(2.4) together with the boundary condi-
tion (2.9) imply

Applying Lemma 4.4 to equation (2.9) leads to the bound

where C is a constant which does not depend on v. Analogously, one can
prove that

Since the charge density in the Q zone is n(x)=rii(x) + n2(x) where

we can use the estimate/C(.Y, /?)<^ + v(x)(p} to 8et

Let us now assume that Vs in not bounded. This means according to
Facts 1, 2, 3 that

This implies that the right hand side of (4.7) tends to zero. Proceeding
analogously for n2, we conclude that n is bounded in L00 whereas Vs is

822/90/3-4-9
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unbounded in L00. This is obviously in contradiction with the Poisson
equation (4.4)(4.5).

Consequently, Vs is bounded in L°° which in turn implies the boun-
dedness of n in L°° in view of (4.7). In view of the Poisson equation, Vs

converges strongly in C° in the Q zone and in C1 in the C zones. Passing
to the limit v -»0 leads to a solution of the self-consistent hybrid model
(4.1)-(4.5), (2.6)(2.8), (2.3)(2.4). The details of the proof, especially proving
that the formula giving the charge density in the Q zone passes to the limit,
are left to the reader.

4.2. Semiclassical Limit

We will pass to the limit h to zero in (4.2) and obtain a kinetic model
on the whole interval [0, L], Due to the lack of estimates induced by
turning points, we shall prove the result when the electric potential V is
given (and regular) and when the absorption v is fixed and strictly positive.
We let/*, \l/p, q>*, be the solutions of Theorem 4.2. Before stating the main
theorem of this section, we introduce the following Banach space s/=
{0 = 9(x,v)\(0(x,ri)eL1(R,;C0([xi,x2']x))}, (see ref. 26), where 6
denotes the Fourier transform with respect to v

We shall assume the following hypothesis on the electrostatic potential

Hypothesis (H)

If V2<V-i, there exists an interval J = \_x2 — s, x2~] on which V^V2.
If Vl < V2, there exists an interval «/ = [xlt x^ + e] on which V^ V\.

Theorem 4.5. Let /* = (/*., f*Q) be the solution of the hybrid
model (4.2), (4.3) with v > 0 fixed and Ve C2[0, L] and satisfies hypothesis
(H). Then/* converges weakly in L°°([(0, jc,)u(.x2)] x R) and in j/'
towards the unique solution / of

which satisfies 0 ̂  f ( x , p)^ ^ + V(x].
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Proof. The proof is organized in three steps. First we prove the con-
vergence in the C zones of/£. to a distribution function fc satisfying the
Boltzmann equation. Then we prove that in the Q zone/g converges to/G

solution of the Vlasov equation. Finally we check that fc = fQ at the inter-
face. The first step is straightforward thanks to the supersolution estimate
(the convergence of the collision operator is done like in ref, 33 by means
of average compactness results).

To pass to the limit in the Q zone, we proceed analogously to ref. 7,
but some additional effort has to be done because the wave functions \l/p

are only bounded in L2(x{, x2) whereas in ref. 7 they are bounded in L°°.
The L2 bounds imply however the weak convergence in si' o f /g to a
positive measure/c on [x j , x2] x R. To derive the problem that the
measure / solves, we proceed like in ref. 7 and compute the expression
(p/m)(df'/dx). By denoting

we find after some simple algebra that

Since
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we deduce from the Schrodinger equation (2.9)-(2.10) that

Hence

Since (!) is identically equal to 1 on [0, L], the term

satisfies

for Be Co°°(IR x R). This result is obtained by applying corollary A.3.
Indeed, the term hH/

h\_(S"\jiq,(9\l*q'\ can be written i^[Hip,(j>] where
H=0", \jj = h\jtq and (p = &\jjq satisfy the requirement of corollary A.3. The
term hi^h\_&'\li'q, (9\l>q~] is treated analogously. Hence, going back to (4.10)
(where the fourth term of the right hand side is treated as above), we get

where r''h satisfies

Let us now pass to the limit in Jm "^[0i^, $^?]. For this aim we recall
that the boundary conditions (2.9), imply that ij/p is a solution on
(— oo, Xj) of the same Schrodinger equation except that v has to be set to
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zero and V(x] replaced by F,. On (x2, +00) V(x) has to be set to V2.
Introducing the notation

we can write the equation satisfied by \l/p on the whole real line

Using this equation, we obtain after some straightforward but lengthy
calculations

where

By applying Lemma A.I for rl and Corollary A.3 for r2 we have

For every de C0
CO(M x K) (we can also prove that this limit is uniform with

respect to q). Proceeding analogously for the <pg and integrating with
respect to q, we deduce from (4.12) that
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for every test function 6 in Cf(IR x U). This proves that the limit fQ of/e
is solution of the Vlasov equation on ( x l t x2). Now we have to check that
/Q = fc at the interfaces. Let 0(x, p) be a test function in C™(RX x Kp) such
that

Let us define the transport-absorption operator and its adjoint T*

Multiplying the Boltzmann equation (4.2), integrating by parts and taking
into account (4.15), we obtain

where

In the above formula, we set /* = fhQ in the Q zone and /* = fhc in the C
zone and 2.(fh) =0 in the Q zone. The term UIh represents the jump of the
distribution function at the Q-C interfaces x = .\l and x = x2. We prove in
Appendix B that this term tends to zero when h tends to zero, which shows
that the limit distribution function does not have a jump at the Q-C inter-
faces.

Passing to the limit in Ih and IIh, we find that the limit distribution
function satisfies

for every 0 satisfying (4.15), which is the weak formulation of (4.8).



5. SOME REMARKS AND COMMENTS

The hybrid model that we have developed in this paper relies on three
hypotheses. The first one is that the transport is purely on dimensional in
the position momentum variables. The second hypothesis consists in
assuming the quantum effect to be confined to a given zone [ x { , x2] of the
device, while the third one stipulates that the quantum zone is purely
ballistic. We shall briefly discuss the validity of these hypotheses.

The one dimensional picture relies on the fact that the geometry of the
device has a privileged direction (say the x axis) and that the potential V
depends only on this direction. This picture is however not completely
correct when the classical zones are collisional. Indeed, the collisions with
impurities or phonons break the independence of the distribution function
with respect to the parallel (y and z) components of the momentum (or the
velocity). Hence, the distribution function/in the C zones depends on one
position variable x and three momentum variables f = (p, py, p2). The
Boltzmann equation reads
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where

This problem cannot be reduced to a one dimensional one. However, since
the transport in the quantum zone does not act on the py and pz variables,
it is possible to write a hybrid model, where the interface conditions
involve py and pz only as parameters. The interface conditions at ,v = .x1

and x = x2 are rigorously the same as proposed in the previous section
except that py and pz are added in the arguments of/ Finally, the Wigner
function in the Q zone reads



Location of quantum effects. In the derivation of our model, we
assumed that quantum phenomena occur only in the interval [ jCi ,x 2 ] .
Also, the potential variation should be small in the vicinity of the inter-
faces. Although, we do not have a quantitative criterion to decide where to
put the Q-C interfaces, we shall give some qualitative hints.

In resonant tunneling diodes, the tunneling effects often occur in the
vicinity of the double barrier. Hence our model is valid when [A-,, x2] is
a region including the double barrier. However, when the RTD is endowed
with a spacer, the tunneling can extend far away from the double barrier
(see for example ref. 30). Hence, the question of where to locate the Q-C
interface requires a careful analysis, depending on the device configuration.
To illustrate this difficulty, let us consider a potential barrier of height V
extending on the interval [a, b~\ and discuss the influence of the location of
the interfaces x^ and x2. If x{ <a and x2> b then the reflection transmis-
sion coefficients computed on [x{,x2] are exactly equal to the reflection
transmission of the potential barrier when the latter is analyzed on the
whole real line. If xl < a and a<x2<b, then it is readily seen that the
transmission coefficient computed on [*i, *2] is equal to zero for electron
energies below the potential barrier. The second localization (a<x2<b)
gives obviously incorrect results if the tunneling effect is not negligible
(when the length of the barrier is small the height being fixed). In this par-
ticularly simple situation, such a problem can be avoided by puting the
interface x2 beyond the point b. However, this issue might be tricky in the
general case and needs a special care in the numerical implentation.

Finally, the third hypothesis stipulating that the quantum zone is
purely ballistic is valid in an RTD in the positive resistance zone of the I-V
curve and ceases to be correct in the valley region (see refs. 11 and 12). We
think however, that the coupling strategy could be adopted in the valley
region by using the master equation (introduced in refs. 11 and 12) which
gives the values of the reflection-transmission coefficients. Note also, that
our model is stationary and one dimensional. The extension to the time
dependent case requires the derivation of inflow boundary conditions for
the Schrodinger equation or the Wigner equation which leads to the
standard inflow condition in the semiclassical limit. The reader can find in
refs. 3, 16-18, 22, 24, and 38 some physical, mathematical and numerical
aspects related to such boundary conditions.

APPENDIX A: WIGNER TRANSFORM ON BOUNDED SETS

Lemma A.I . Let (\f/K, <ph) be two sequences of functions bounded
in L2 and satisfying the following hypothesis
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Let Q be a bounded open set of K.N with a boundary of finite surface
measure and let Fh be a sequence of functions on (R^x U% satisfying the
following two hypotheses

( i i ) There exists a constant A " > 0 such that

( i i i ) There exists < x > 0 such that

where Ih(Q) = {(x, q)eQ x UN B^^x)^®}, and BR(x) denotes the
closed ball in UN with radius R and centered at .v.

Then for every 0(x, p)e C f f l R ^ x UN), we have

where 0(.\, ij) is the Fourier transform with respect to p.

Proof. Let us denote the above integral by Jh(9). We can split this
integral in two ones depending on the modulus of r\: Jh = J\ + J2h where

The second integral can be made arbitrarily small by choosing R large
enough. Indeed, some simple algebra in the spirit of ref. 26 lead to the
following estimate

We conclude by taking into account ( i i ) and by noting that 0 is rapidly
decaying since 6 is in C". Now we write
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The second integral is, like J2h, estimated by

which tends to zero in view of hypothesis (iii). The first integral can be
estimated by

for / j ^ l . Besides, it is readily seen that \QxBR — Ih(Q}\^Ch which in
view of hypotheses (i) and (i i) imply that the above expression vanishes in
the limit h -»0. The proof is then complete.

Remark A.2. Hypothesis (i) is satisfied when hN+lDN+l\l/f!((/)t,) are
bounded in L]oc. These bounds are satisfied when \jjh is solution of a
Schrodinger equation

with a potential Vh smooth enough (for example Vh bounded in Wfac 1>co

when h tend to zero. Hypothesis (iii) implies that Fh -> 0 a.e. xeQ, rje UN

but requires a little uniformity when x tends to the boundary.

The following corollary is a direct application of Lemma A. 1

Corollary A.3. Let H be an Lro function such that // = 0 a.e. on a
regular bounded domain Q<=.RN. Let t^A, <ph be a sequence of functions
satisfying the hypotheses of Lemma A.I Then for all 9e C™(UNx UN), we
have

where i^,[a, b~\ is defined by (4.9).

Remark A.4. The corollary remains true if we only assume that H
is in L£.

Proof. The corollary is an application of Lemma A.I with
F/l(x,rj) = H(x-(h/2))i). It is then easy to check the hypotheses (ii) and
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(iii) of the lemma. For hypothesis (iii), we choose <x= 1/2. Therefore for
( x , r j ) e l h , we have x-(h/2)t]eQ and then H(x-(h/2)r]) = 0.

APPENDIX B: CONVERGENCE AT THE INTERFACE

In this appendix, we show that the quantum and classical distribution
functions are asymptotically equal at the C-Q interfaces. Namely,

Lemma B.I . Let/* = (/*,,/^) be the solution of (4.2) (4.3) with a
given potential FeC2([0, L]). Then for every 6 such that (0(p)/p)e
CfXR,,) the following limits hold

Proof. Let us prove that the first integral tends to zero. For
this aim, we recall that the boundary conditions (2.9) imply that
l l / p ( x )  =  e i p ( ( * - x i W  +  r p e - i i X ( x - x l V f ' )  f o r  x ^ X i  a n d  / ^ |  =  | r ^ 2  F o r

x>x2, \l/p reads \l/p(x) = tpei((x-**m Vp2 + ̂ (̂ -̂  and T î = (i/p)
v/(p2 + 2em(V2- K!»+ \tp\2. Rescaling the Schrodinger equation (2.9) in
the vicinity of xl and x2, we find that

where o ( l ) is uniform when (p, rj) lie in a bounded set. For a detailed
proof, we refer the reader to ref. 7. In the same way, we can prove that

where we have
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Let us now compute /* = JR 0 ( p ) [ f t l
c ( x l , p } — f h

Q ( x \ , p)] dp. First, we
write

Besides, we have

In order to analyze the first integral of the right hand side, we replace \l/p

by its asymptotic formula (B. I )

Hence

The last equality is recovered by back Fourier transforming (with respect
to rj) and by noticing that 9(0) = 0. To prove rigorously the first equality,
we use the Lebesgue dominated convergence theorem and we need the
following lemma whose proof is postponed.
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Lemma B.2. Let V is in C 2 ( [ x { , x 2 ] ) and satisfies Hypothesis (H)
of subsection 4.3 holds. Then the following estimates hold

Indeed, this lemma implies that the integrand of the left hand side of (B.5)
is bounded by CJ^ + F i(<7)(l +q)2 (1 + |//|)2 \9(r])\. This function is in Ll

since J^ and 8 are rapidly decaying. To analyze the second integral of the
right hand side of (B.4), we distinguish two cases:

• Case 1. />,((), V) e R+. This means ( F, ^ F2). We make the change
of variables q = pi(p, V) which implies that p = p\(q, V) and use the
asymptotic expression (B.2). Since pdp = qdq, we find the asymptotic
behavior

But since (p/p2) \t'p2\
2 is nothing but Tv

 2= Tv
p , (in view of Lemma 2.3)

and since Tv
p t=0 when/?</>,((), K), the following identity holds

Combining the above formula with (B.3) (B.4) and (B.5) leads to the first
identity of Lemma B.I.

. Case 2. /?,((), V)eiR+. This implies that p2(Q, F)e R+. Hence we
cut the integral 72 into two integrals
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The first integral is treated exactly as in case 1 and leads after the change
of variable to

To prove the result of Lemma B.I, we have to show that the second
integral tends to zero. Here again, we use the Lebesgue's dominated con-
vergence theorem. The integrand

is bounded by

and converges pointwise to zero in view of the following lemma

Lemma B.3. Let p>0 such that p\(p, V ) e i ( Q , +co). Then there
exits an interval in the vicinity of x, on which <pp solution of (2.10) con-
verges uniformly to zero.

We then have proven the first part of Lemma B.I. The second part
follows in complete analogy. We shall now give the proofs of Lemmas B.2
and B.3

To look for a bound of I/JP and \//'p at x = x2, we distinguish two cases:

• p2(p, F )e lR + ; in this case we have in view of (2.11)

Proof of Lemma B.2, For the sake of simplicity, we will only prove
the estimate for {j/p. The other estimate follows in analogy. We first recall
that in view of (2.11)
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• Pi(P> V)eiR+. This implies that V2<Vl. Since, \l/p solves (2.9),
then it satisfies the following inequality on every interval in the vicinity of
x2 on which it does not vanish

Since the boundary condition (2.9) at x = x2 yields | \j/p \' (x2 X 0, the above
differential inequality implies that \\l/p(x)\ ^ \^p(x2)\ on the interval J (see
Hypothesis (H) of subsection 4.3), because the multiplication term
(eVi — eV(x) — (p2/2m)) is nonnegative. Consequently, we have

We can group the results and get the following estimate on \l/'p(x2), ^P(x2)

where the constant C does not depend on p neither on h. This proves the
first estimate of the lemma. Let us now introduce the function

Using the Schrodinger equation (2.9), we have the following identity

Since || ̂  || |a < QJ and h2 H^Jizs? Cp(\ + p) (see (4.11), we deduce in
view of (B.6) that G is bounded in L°° by Cp(\ + p). Let now, a point
xMe[xi,x2] on which \&e\]j'p(x)\ achieves its maximum. Assume, that
xMe(xi,x2) such that &eil/'p(xM) = 0. Using the Schrodinger equation
(2.9), we deduce that
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which implies in view of the bound on G, that

Let us note that this estimate is still true if xM = .\l or .v2. Doing the same
job for the imaginary part, we finally get

and the lemma is proved.

Proof of Lemma B.3. Since />,(/>, F)e/K + , then

on an interval,/ = [.x,, .v, + <$] in the vicinity of x\. By the same argument
as in the proof of Lemma B.2, we deduce that

Since \(pp\' ( . X [ ) ^ 0 in view of the second equation of (2.10), we deduce
that

and we conclude easily by using the bound H ^ l l ^ ^ Cp.
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